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RULE Methodology

• SPA has developed a Monte-Carlo simulation-
based statistical technique for calculating the 
remaining fatigue life of dynamic components

• This technique shows excellent potential for 
increasing the fatigue life of critical 
components without decreasing their 
reliability

• The technique may also be used to remove 
over-stressed components earlier than 
anticipated to prevent premature failure



RULE Development Program

• Developed to reduce the maintenance costs 
of  helicopter flight critical components

• Developed during an OSD/US Army Phase 
I SBIR program that focused on analytical 
development and simulations

• Phase II program pending



Background Assumptions

• It is assumed that the components under consideration 
are primarily subject to static and alternating dynamic 
loads

• The component’s fatigue life follows the standard 
Miner’s Law of Cumulative Damage for fatigue

• Real-time measurement of the components operating 
conditions (regimes, loads, or stresses) provides input 
into the RULE methodology

• The RULE methodology gives a amount of fatigue life 
that has been consumed by the component with a 
specified reliability



Current Rotorcraft Component Life 
Prediction Methodology

Assumed Usage Spectrum

Component Loads

S-N Curve

Miner’s Law of Cumulative Damage

Safe Life Limit >99% Reliability



RULE Methodology 
(using regime recognition)

Known Usage Spectrum

Component Loads

S-N Curve

Miner’s Law of Cumulative Damage

Safe Life Limit >99% Reliability ???



RULE Methodology 
(using predicted flight loads)

Known
Component Loads

S-N Curve

Miner’s Law of Cumulative Damage

Safe Life Limit >99% Reliability ???



Phase I SBIR Program Objectives

• Develop a neural network to perform flight 
regime recognition/flight loads prediction

• Optimize network parameters
— Training/Validation data sets

— Training methodology

— Input parameters

• Investigate the effectiveness of the proposed 
statistical analysis technique for calculating 
remaining life



Phaes I SBIR Program Task 5: 
Statistical Reliability Analysis

• Preliminary investigation of a Monte Carlo  
based technique for predicting remaining 
useful life of individual components for a 
desired reliability will be completed using:
— Small-scale models

— Example problems



Monte Carlo Simulation of Helicopter 
Component Life

• Breakdown Component Life into Discrete 
Time Steps

• Choose Flight Regime, Component Loads, 
and S-N Curve for each Time Step

• Increment Life Used for Individual Time 
Step

• Determine Safe Life of the Component 

• Locate Failure Scenarios



Reliability Analysis

Usage Severity Component Loads S-N Curve

Regions of Early Failure

Average value within the failed regions

From the Monte-Carlo simulation

After performing usage monitoring (regime or flight loads) use these 
‘average’ failed values to perform remaining life prediction with 

Miner’s Law of Cumulative Damage



Helicopter Component Baseline 
Model
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Simulation Technique

Monte Carlo 
Simulation

Extreme 
Usage Values

Fatigue Life 
Simulation

Actual Fatigue Life 
(using random values)

Predicted Fatigue Life 
(using extreme values)

Success/Fail ???

Which one fails first?

Componen
t Life



Regime Distribution Randomness

• Early tests showed that the randomness of the 
regime distribution has the greatest effect on the 
component’s useful life

• Extreme values for flight loads and S-N curve are 
therefore lower in the extreme cases (regime was 
severe but loads and S-N were normal)

• The technique did not work well when applied to 
blind simulations

SOLUTION: FIX REGIME DISTRIBUTION DURING 
MONTE CARLO SIMULATION



Average Extreme Values

• Initial attempts involved simply averaging the 
extreme values 

• Technique does not work well

• Flight load values were extreme but not extreme 
enough

• Method failed approximately 10% of the time

SOLUTION: MUST CONSIDER HOW THE RANDOM 
VARIABLE AFFECTS THE OVERALL RESULTS



Need for Inversion in Curve Fitting

More heavily weighted 
region due  to large N

Most important region 
for determining fatigue 
life



Extreme ‘Inverse’ Algorithm

• Fatigue life is a function of 1/N, not N

• From the Monte Carlo extreme loads, calculate stress and 
N (assuming no randomness)

• Invert N (because of Miner’s Law) and average, re-invert 
and back calculate extreme load
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Statistical Test Results
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S-N Curve Randomness Only

• Previous methodology is not valid if the neural network 
predicts component loads instead of flight regime

• Modify technique by ‘fixing’ the regime distribution and 
component loads in Monte Carlo simulation
— All extreme cases come from extreme S-N curve points

• Use these points (inverted) with ‘known’ flight loads

• How do you curve fit to the assumed S-N curve?  
Mathematically extremely difficult and computationally 
intensive
— Limit flight loads to have no randomness



Flexibility of RULE

• Although the Phase I SBIR focused on 
flight critical helicopter components, the 
methodology can be applied to other 
prognostics programs

• Alternative damage laws (other than 
Miner’s Law of Cumulative Damage) can 
be easily incorporated into RULE

• Can be applied to any function with 
random variables


